OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Fall 2003 Final Exam

Ph.D. Students- DO ALL FIVE PROBLEMS

<u>MS Students- Choos</u>	1).	2).		
	Name: _			
St	udent ID:			<u> </u>
F Mail	A ddwaaa.			

Problem 1:

Find an canonical form realization (in minimal order) from SISO continuous-time system given below:

$$5^{2}$$
"()+(-1)"()+ -2 ()=2"()+2"()- 2 ().

Notice that gain blocks may be dependent. Show the state space representation and its corresponding simulation diagram.

Problem 2:

- a) Prove that a square matrix is nonsingular if and only if there is no zero eigenvalue.
 b) Show that functions of the same matrix commute, i.e., () () = () ().

Problem 3:

Show that if λ is an eigenvalue of the matrix

$$= \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\alpha_0 & -\alpha_1 & -\alpha_2 & \cdots & -\alpha_{-1} \end{bmatrix},$$

then a corresponding eigenvector is $\quad = \begin{bmatrix} 1 & \lambda & \cdots & \lambda^{-1} \end{bmatrix}$.

Problem 4:
Find an "equivalent" continuous-time
$$\begin{bmatrix}
1 & (+1) \\
2 & (+1) \\
3 & (+1)
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -4 & -3
\end{bmatrix} \begin{bmatrix}
1 & () \\
3 & ()
\end{bmatrix} + \begin{bmatrix}
0 & 1 \\
1 & 2 \\
-1 & 1
\end{bmatrix} (),$$

$$() = \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 1
\end{bmatrix} \begin{bmatrix}
1 & () \\
2 & () \\
3 & ()
\end{bmatrix}.$$

Problem 5: Show the continuous, time-invariant system '= + is controllable, if and only if $\rho[\lambda - ,] = \text{ for every eigenvalue } \lambda, = 1, \dots, \text{ of } .$